Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 32(2): 486-507, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31757927

RESUMO

Nitrogen (N) limits crop yield, and improvement of N nutrition remains a key goal for crop research; one approach to improve N nutrition is identifying plant-interacting, N2-fixing microbes. Rhodotorula mucilaginosa JGTA-S1 is a basidiomycetous yeast endophyte of narrowleaf cattail (Typha angustifolia). JGTA-S1 could not convert nitrate or nitrite to ammonium but harbors diazotrophic (N2-fixing) endobacteria (Pseudomonas stutzeri) that allow JGTA-S1 to fix N2 and grow in a N-free environment; moreover, P. stutzeri dinitrogen reductase was transcribed in JGTA-S1 even under adequate N. Endobacteria-deficient JGTA-S1 had reduced fitness, which was restored by reintroducing P. stutzeri JGTA-S1 colonizes rice (Oryza sativa), significantly improving its growth, N content, and relative N-use efficiency. Endofungal P. stutzeri plays a significant role in increasing the biomass and ammonium content of rice treated with JGTA-S1; also, JGTA-S1 has better N2-fixing ability than free-living P. stutzeri and provides fixed N to the plant. Genes involved in N metabolism, N transporters, and NODULE INCEPTION-like transcription factors were upregulated in rice roots within 24 h of JGTA-S1 treatment. In association with rice, JGTA-S1 has a filamentous phase and P. stutzeri only penetrated filamentous JGTA-S1. Together, these results demonstrate an interkingdom interaction that improves rice N nutrition.


Assuntos
Bactérias/metabolismo , Basidiomycota/metabolismo , Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Oryza/metabolismo , Oryza/microbiologia , Rhodotorula/metabolismo , Compostos de Amônio , Basidiomycota/crescimento & desenvolvimento , Endófitos/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Pseudomonas/metabolismo , Pseudomonas stutzeri/metabolismo , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/isolamento & purificação , Simbiose , Transcriptoma
2.
J Plant Physiol ; 243: 153051, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31639535

RESUMO

Phosphorus (P) is an essential mineral, required for crucial plant genetic, metabolic and signaling functions. Under P deficiency, normal physiological function can be disrupted, especially photosynthetic metabolism. The majority of photosynthetic studies of P stress has been on model organisms, and very little is known about plants that evolved on P deficient soils. Aspalathus linearis (Burm.f.) R.Dahlgren, a native to the Mediterranean ecosystem of South Africa was used to study the photosynthetic responses during short-term P limitation. A. linearis seedlings were cultured under glasshouse conditions and exposed to short-term P stress. Leaf photosynthetic gas exchange was coupled with metabolic analyses. In spite of the decline in leaf cellular Pi, the photosynthetic rates remained unchanged. These leaves also maintained their levels of light harvesting and reaction center pigments. The efficiency of the light reactions' utilization of ATP and NADPH increased during P-stress. Leaf glucose levels decreased during P-stress, while sucrose concentrations remained unaffected. These results show that during short-term P-stress, A. linearis can maintain its photosynthetic rates by altering the structural and functional components of the light reactions.


Assuntos
Aspalathus/metabolismo , Fosfatos/deficiência , Fósforo/deficiência , Fotossíntese , Ecossistema , Fosfatos/metabolismo , Fósforo/metabolismo , África do Sul
3.
J Plant Physiol ; 243: 153053, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31644998

RESUMO

Glutamate dehydrogenase (NAD(H)- GDH, EC 1.4.1.2) is an important enzyme in nitrogen (N) metabolism. It serves as a link between C and N metabolism, in its role of assimilating ammonia into glutamine or deaminating glutamate into 2-oxoglutarate and ammonia. GDH may also have a key in the N assimilation of legumes growing in P-poor soils. Virgilia divaricata is such a legume, growing in the nutrient limited soils of the mediterranean-type Cape fynbos ecosystem. In order to understand the role of GDH in the nitrogen nutrition of V. divaricata, the aim of this study was to identify the GDH gene transcripts, their relative expressions and enzyme activity in P-stressed roots and nodules during N metabolism. During P deficiency there was a reduction in total plant biomass as well as total plant P concentration. The analysis of the GDH cDNA sequences in V. divaricata revealed the presence of GHD1 and GHD2 subunits, these corresponding to the GDH1, GDH-B and GDH3 genes of legumes and non-legume plants. The relative expression of GDH1 and GDH2 genes in the roots and nodules, indicates that two the subunits were differently regulated depending on the organ type, rather than P supply. Although both transcripts appeared to be ubiquitously expressed in the roots and nodules, the GDH2 transcript evidently predominated over those of GDH1. Furthermore, the higher expression of both GDH transcripts in the roots than nodules, suggests that roots are more reliant on on GDH in P-poor soils, than nodules. With regards to GHD activity, both aminating and deaminating GDH activities were differently affected by P deficiency in roots and nodules. This may function to assimilate N and regulate internal C and N in the roots and nodules. The variation in GDH1 and GDH2 transcript expression and GDH enzyme activities, indicate that the enzyme may be regulated by post-translational modification, instead of by gene expression during P deficiency in V. divaricata.


Assuntos
Aclimatação , Fabaceae/fisiologia , Expressão Gênica , Glutamato Desidrogenase/genética , Fósforo/deficiência , Proteínas de Plantas/genética , Fabaceae/enzimologia , Fabaceae/genética , Glutamato Desidrogenase/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/genética , África do Sul , Transcriptoma
4.
Front Plant Sci ; 10: 73, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30804964

RESUMO

Virgilia divaricata is a tree legume that grows in the Cape Floristic Region (CFA) in poor nutrient soils. A comparison between high and low phosphate growth conditions between roots and nodules was conducted and evaluated for the plants ability to cope under low phosphate stress conditions in V. divaricata. We proved that the plant copes with low phosphate stress through an increased allocation of resources, reliance on BNF and enhanced enzyme activity, especially PEPC. Nodules had a lower percentage decline in P compared to roots to uphold its metabolic functions. These strategies partly explain how V. divaricata can sustain growth despite LP conditions. Although the number of nodules declined with LP, their biomass remained unchanged in spite of a plant decline in dry weight. This is achieved via the high efficiency of BNF under P stress. During LP, nodules had a lower % decline at 34% compared to the roots at 88%. We attribute this behavior to P conservation strategies in LP nodules that imply an increase in a metabolic bypass that operates at the PEP branch point in glycolysis. The enhanced activities of nodule PEPC, MDH, and ME, whilst PK declines, suggests that under LP conditions an adenylate bypass was in operation either to synthesize more organic acids or to mediate pyruvate via a non-adenylate requiring metabolic route. Both possibilities represent a P-stress adaptation route and this is the first report of its kind for legume trees that are indigenous to low P, acid soils. Although BNF declined by a small percentage during LP, this P conservation was evident in the unchanged BNF efficiency per weight, and the increase in BNF efficiency per mol of P. It appears that legumes that are indigenous to acid soils, may be able to continue their reliance on BNF via increased allocation to nodules and also due to increase their efficiency for BNF on a P basis, owing to P-saving mechanisms such as the organic acid routes.

5.
Plant Sci ; 256: 46-52, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28167037

RESUMO

Legumes play a significant role in natural and agricultural ecosystems. They can fix atmospheric N2 and contribute the fixed N to soils and plant N budgets. In legumes, the availability of P does not only affect nodule development, but also N acquisition and metabolism. For legumes as an important source of plant proteins, their capacity to metabolise N during P deficiency is critical for their benefits to agriculture and the natural environment. In particular for farming, rock P is a non-renewable source of which the world has about 60-80 years of sustainable extraction of this P left. The global production of legume crops would be devastated during a scarcity of P fertiliser. Legume nodules have a high requirement for mineral P, which makes them vulnerable to soil P deficiencies. In order to maintain N metabolism, the nodules have evolved several strategies to resist the immediate effects of P limitation and to respond to prolonged P deficiency. In legumes nodules, N metabolism is determined by several processes involving the acquisition, assimilation, export, and recycling of N in various forms. Although these processes are integrated, the current literature lacks a clear synthesis of how legumes respond to P stress regarding its impact on N metabolism. In this review, we synthesise the current state of knowledge on how legumes maintain N metabolism during P deficiency. Moreover, we discuss the potential importance of two additional alterations to N metabolism during P deficiency. Our goals are to place these newly proposed mechanisms in perspective with other known adaptations of N metabolism to P deficiency and to discuss their practical benefits during P deficiency in legumes.


Assuntos
Adaptação Fisiológica , Fabaceae/metabolismo , Nitrogênio/metabolismo , Fosfatos/metabolismo , Fósforo/metabolismo , Nódulos Radiculares de Plantas/metabolismo , Fixação de Nitrogênio , Fosfatos/deficiência , Fósforo/deficiência , Nodulação , Rhizobium
6.
Funct Plant Biol ; 43(3): 287-297, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32480461

RESUMO

Virgilia divaricata Adamson is a forest margin legume that is known to invade the N- and P-poor soils of the mature fynbos, implying that it tolerates variable soil N and P levels. It is not known how the legume uses inorganic N from soil and atmospheric sources under variable P supply. Little is known about how P deficiency affects the root nodule metabolic functioning of V. divaricata and the associated energy costs of N assimilation. This study aimed to determine whether P deficiency affects the metabolic status of roots and nodules, and the impact on the routes of N assimilation in V. divaricata.V. divaricata had reduced biomass, plant P concentration and biological nitrogen fixation during P deficiency. Based on adenylate data, P-stressed nodules maintained their P status better than P-stressed roots. V. divaricata was able to alter C and N metabolism differently in roots and nodules under P stress. This was achieved via internal P cycling by possible replacement of membrane phospholipids with sulfolipids and galactolipids, and increased reliance on the pyrophosphate (PPi)-dependent metabolism of sucrose via UDP-glucose (UDPG) and to fructose-6-phosphate (Fru-6-P). P-stressed roots mostly exported ureides as organic N and recycled amino acids via deaminating glutamate dehydrogenase. In contrast, P-stressed nodules largely exported amino acids. Compared with roots, nodules showed more P conservation during low P supply. The roots and nodules of V. divaricata metabolised N differently during P stress, meaning that these organs may contribute differently to the success of this plant in soils from forest to fynbos.

7.
Funct Plant Biol ; 43(4): 337-345, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32480465

RESUMO

Drought stress is one of the most important environmental factors that adversely affect the productivity and quality of crops. Most studies focus on elucidating plant responses to this stress but the reversibility of these effects is less known. The aim of this work was to evaluate whether drought-stressed peanut (Arachis hypogaea L.) plants were capable of recovering their metabolism upon rehydration, with a focus on their antioxidant system. Peanut plants in the flowering phase (30 days after sowing) were exposed to drought stress by withholding irrigation during 14 days and subsequent rehydration during 3 days. Under these conditions, physiological status indicators, reactive oxygen species production and antioxidant system activity were evaluated. Under drought stress, the stomatal conductance, photosynthetic quantum yield and 13C:12C ratio of the peanut plants were negatively affected, and also they accumulated reactive oxygen species. The antioxidant system of peanut plants showed increases in superoxide dismutase-, ascorbate peroxidase- and glutathione reductase-specific activities, as well as the total ascorbate content. All of these responses were reversed upon rehydration at 3 days. The efficient and dynamic regulation of variables related to photosynthesis and the antioxidant system during a drought and rehydration cycle in peanut plants was demonstrated. It is suggested that the activation of the antioxidant system could mediate the signalling of drought stress responses that enable the plant to survive and recover completely within 3 days of rehydration.

8.
J Plant Physiol ; 171(17): 1619-24, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25155758

RESUMO

It is not known how phosphate (P) deficiency affects the allocation of carbon (C) to biological nitrogen fixation (BNF) in legumes. The alteration of the respiratory and photosynthetic C costs of BNF was investigated under P deficiency. Although BNF can impose considerable sink stimulation on host respiratory and photosynthetic C, it is not known how the change in the C and energy allocation during P deficiency may affect BNF. Nodulated Lupinus luteus plants were grown in sand culture, using a modified Long Ashton nutrient solution containing no nitrogen (N) for ca. four weeks, after which one set was exposed to a P-deficient nutrient medium, while the other set continued growing on a P-sufficient nutrient medium. Phosphorus stress was measured at 20 days after onset of P-starvation. During P stress the decline in nodular P levels was associated with lower BNF and nodule growth. There was also a shift in the balance of photosynthetic and respiratory C toward a loss of C during P stress. Below-ground respiration declined under limiting P conditions. However, during this decline there was also a shift in the proportion of respiratory energy from maintenance toward growth respiration. Under P stress, there was an increased allocation of C toward root growth, thereby decreasing the amount of C available for maintenance respiration. It is therefore possible that the decline in BNF under P deficiency may be due to this change in resource allocation away from respiration associated with direct nutrient uptake, but rather toward a long term nutrient acquisition strategy of increased root growth.


Assuntos
Carbono/metabolismo , Lupinus/fisiologia , Nitrogênio/metabolismo , Fósforo/deficiência , Transporte Biológico , Dióxido de Carbono/metabolismo , Respiração Celular , Metabolismo Energético , Lupinus/crescimento & desenvolvimento , Fixação de Nitrogênio , Fósforo/metabolismo , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Transpiração Vegetal
9.
J Plant Physiol ; 171(8): 648-54, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24709158

RESUMO

The legume Lupinus albus is able to survive under low nutrient conditions due to the presence of two specialized below ground organs for the acquisition of nitrogen and phosphate, respectively.In this regard, cluster roots increase phosphate uptake and root nodules acquire atmospheric N2via biological nitrogen fixation(BNF). Although these organs normally tolerate low phosphate conditions, very little is known about their physiological and metabolic flexibility during short-term changes in phosphate supply. The aim of this investigation was therefore to determine the physiological and metabolic flexibility of these organs during short-term supply of elevated phosphate nutrition. L. albus was cultivated in sand culture for 4 weeks at 0.1 mM phosphate supply, and then supplied with 2 mM phosphate for 2 weeks. Short-term elevated phosphate supply caused increased allocation of carbon and respiratory costs to nodules, at the expense of cluster root function. This alteration was also reflected in the increase in nodule enzyme activities related to organic acid synthesis, such as Phosphoenol-pyruvate Carboxylase (PEPC), Pyruvate Kinase (PK), Malate Dehydrogenase(NADH-MDH) and Malic Enzyme (ME). In cluster roots, elevated phosphate conditions caused a decline in these organic acid synthesizing enzymes. Phosphate recycling via Acid Phosphatase (APase),declined in nodules with elevated phosphate supply, but increased in cluster roots. Our findings suggest that during short-term elevated phosphate supply, there is a great degree of physiological and metabolic flexibility in lupin nutrient acquiring structures, and that these changes are related to the altered physiology of these organs [corrected].


Assuntos
Carbono/metabolismo , Lupinus/crescimento & desenvolvimento , Lupinus/metabolismo , Nitrogênio/metabolismo , Fosfatos/metabolismo , Biomassa , Lupinus/enzimologia , Modelos Biológicos , Fixação de Nitrogênio , Fotossíntese , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/enzimologia , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo
10.
J Plant Physiol ; 171(3-4): 285-91, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24129121

RESUMO

Lupins can rely on both cluster roots and nodules for P acquisition and biological nitrogen fixation (BNF), respectively. The resource allocation (C, N and P) between cluster roots and nodules has been largely understudied during P-deficient conditions. The aim of this investigation was therefore to determine the changes in resource allocation between these organs during fluctuations in P supply. Lupinus albus was cultivated in sand culture for 3 weeks, with either sufficient (2 mM high) or limiting (0.1 mM low) P supply. Although variation on P supply had no effect on the total biomass, there were significant differences in specialised below-ground organ allocation to cluster roots and nodule formation. Cluster root formation and the associated C-costs increased during low P supply, but at sufficient P-supply the construction and growth respiration costs of cluster roots declined along with their growth. In contrast to the cluster root decline at high P supply, there was an increase in nodule growth allocation and corresponding C-costs. However, this was not associated with an increase in BNF. Since cluster roots were able to increase P acquisition under low P conditions, this below-ground investment may also have benefited the P nutrition of nodules. These findings provide evidence that when lupins acquire N via BNF in their nodules, there may be a trade-off in resource allocation between cluster roots and nodules.


Assuntos
Lupinus/fisiologia , Fósforo/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Lupinus/genética , Lupinus/metabolismo
11.
Methods Mol Biol ; 1016: 261-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23681586

RESUMO

Homeostatic maintenance of physiological and biochemical processes is a key requirement for survival and adaptive responses of multicellular organisms such as plants. These important processes are in part mediated by various plant enzymes and hormones, many of which are in part, controlled by cyclic nucleotides and/or other signalling molecules. Infrared gas analysis (IRGA) technique is one of the modern methods which allows for rapid and accurate measurements of cyclic nucleotide mediated photosynthetic responses to plant hormones, and thus makes it a powerful and useful tool to study aspects of downstream cell signalling events in plants. In this chapter the basic protocols enabling the use of the IRGA technique to study signalling molecules, such as cyclic nucleotides on photosynthetic responses, are outlined.


Assuntos
Técnicas de Química Analítica/métodos , Gases/análise , Raios Infravermelhos , Fotossíntese , Dióxido de Carbono/metabolismo , Luz , Peptídeos Natriuréticos/metabolismo , Nucleotídeos Cíclicos/farmacologia , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Plectranthus/efeitos dos fármacos , Plectranthus/fisiologia , Plectranthus/efeitos da radiação , Água/farmacologia
13.
J Plant Physiol ; 168(5): 459-65, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-20926158

RESUMO

The role of phosphorus (P) status in root-zone CO(2) utilisation for organic acid synthesis during Al(3+) toxicity was assessed. Root-zone CO(2) can be incorporated into organic acids via Phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31). P-deficiency and Al(3+) toxicity can induce organic acid synthesis, but it is unknown how P status affects the utilisation of PEPC-derived organic acids during Al(3+) toxicity. Two-week-old Solanum lycopersicum seedlings were transferred to hydroponic culture for 3 weeks. The hydroponic culture consisted of a standard Long Ashton nutrient solution containing either 0.1µM or 1mM P. Short-term Al(3+) toxicity was induced by a 60-min exposure to a pH-buffered solution (pH 4.5) containing 2mM CaSO(4) and 50µM AlCl(3). Al(3+) toxicity induced a decline in root respiration, adenylate concentrations and an increase in root-zone CO(2) utilisation for both P sufficient and P-deficient plants. However during Al(3+) toxicity, P deficiency enhanced the incorporation and metabolism of root-zone CO(2) via PEPC. Moreover, P deficiency led to a greater proportion of the PEPC-derived organic acids to be exuded during Al(3+) toxicity. These results indicate that P-status can influence the response to Al(3+) by inducing a greater utilisation of PEPC-derived organic acids for Al(3+) detoxification.


Assuntos
Alumínio/toxicidade , Dióxido de Carbono/metabolismo , Fósforo/deficiência , Raízes de Plantas/metabolismo , Biomassa , Solanum lycopersicum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...